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An illustrative model for bioheat transfer is developed. An analytical solution is obtained for forced con-
vection in a parallel plate channel occupied by a layered saturated porous medium with counterflow, the
dominant feature that distinguishes bioheat transfer from other forms of heat transfer. The case of asym-
metrical constant heat-flux boundary conditions is considered and the Brinkman model is employed for
the porous medium. It is found that the Nusselt number Nu is zero when the mean velocity is zero, and
negative values can be attained.
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1. Introduction

In recent years increasing attention has been given to using a
porous medium to model bioheat transfer with counterflow
([1–3]). In particular, Nakayama et al. [4,5] have applied volume
averaging to obtain a general set of macroscopic equations for
countercurrent bioheat transfer between terminal arteries and
veins in the circulatory system. Three energy equations are
derived, one for each of the arterial blood, venous blood and solid
tissue phases. The equations involve coefficients dependent on
convection–perfusion parameters and it is not easy to estimate
values for these. The set of general equations has not yet been
applied to specific problems.

In this paper a radically new approach is taken. We believe that
the main feature that distinguishes bioheat transfer from other
forms of heat transfer is the counterflow that is involved in the for-
mer (for example, a counterflow in arteries and veins). Accordingly
our objective has been to investigate basic forced convection in a
channel with counterflow using a model with simplified geometry
and without regard to physiological details. As far as we are aware
no theoretical work on this problem has been published.

Our analysis is in some aspects an extension of the study by
Nield and Kuznetsov [6]. Those authors studied forced convection
in a channel with permeability and thermal conductivity varying
across the channel. The new feature is that the flow direction
now also varies across the channel.
ll rights reserved.
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etsov).
2. Analysis

The domain of interest is shown in Fig. 1. For the steady-state
fully-developed situation we have unidirectional flow in the x*-
direction between impermeable boundaries at y* = 0 and y* = H.
We assume that the permeability K and the effective thermal con-
ductivity k are functions of y* only. Then the Brinkman momentum
equation is

leff
d2u�

dy�2
� l

K
u� þ G ¼ 0; ð1Þ

where leff is an effective viscosity, l is the fluid viscosity, K is the
permeability, and G is the applied pressure gradient. We suppose
that leff, K and G take different values in the two layers. Explicitly,
we assume that

K ¼ K1; leff ¼ leff1; G ¼ c1Gref for 0 < y� < nH; ð2aÞ
K ¼ K2; leff ¼ leff2; G ¼ �c2Gref for nH < y� < H; ð2bÞ

where Gref is a reference value.
We define dimensionless variables

x ¼ x�

H
; y ¼ y�

H
; u ¼ lu�

Gref H
2 : ð3a;b; cÞ

The dimensionless forms of Eq. (1) are

M1
d2u1

dy2 � N1u1 þ 1 ¼ 0; ð4aÞ

M2
d2u2

dy2 � N2u2 � 1 ¼ 0; ð4bÞ
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Nomenclature

cP specific heat at constant pressure of the fluid
G applied pressure gradient
H channel width
k effective thermal conductivity
K permeability
M pressure-gradient modified viscosity ratio, leff/(cl)
N pressure-gradient modified reciprocal Darcy number,

H2/(cK)
Nu Nusselt number defined in Eq. (21)
P, Q, R quantities defined in Eq. (30)
q00w wall heat flux
q00l mean wall heat flux, 1

2 ðq00w1 þ q00w2Þ
T* temperature
Tm bulk mean temperature defined in Eq. (11)
Tw wall temperature
Twl mean of the two wall temperatures, 1

2 ðTw1 þ Tw2ÞbT dimensionless temperature, T��Twl

Tm�Twl

u dimensionless filtration velocity, lu*/GrefH
2

u* filtration velocity
û rescaled dimensionless velocity, u*/U

�u dimensionless mean velocity defined in Eq. (15)
U mean velocity defined in Eq. (11)
x dimensionless longitudinal coordinate, x*/H
x* longitudinal coordinate
y dimensionless transverse coordinate, y*/H
y* transverse coordinate

Greek symbols
b parameter defined in Eq. (28)
c parameter controlling applied pressure gradient,

G = ±cGref

k parameter defined in Eq. (8a,b)
l fluid viscosity
leff effective viscosity
n position of the interface between the two layers
q fluid density

Subscripts
1 parameters of the first layer, 0 < y* < nH
2 parameters of the second layer, nH < y* < H
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where the pressure-gradient modified viscosity ratios M1, M2 and
the pressure-gradient modified reciprocal Darcy numbers N1, N2

are defined by

M1 ¼
leff1

c1l
; M2 ¼

leff2

c2l
; N1 ¼

H2

c1K1
; N2 ¼

H2

c2K2
: ð5a;b; c;dÞ

Eqs. (4a,b) must be solved subject to the boundary conditions

u1 ¼ 0 at y ¼ 0; ð6aÞ
u1 ¼ 0 at y ¼ n; ð6bÞ
u2 ¼ 0 at y ¼ n; ð6cÞ
u2 ¼ 0 at y ¼ 1: ð6dÞ

The solution of Eqs. (4a,b) subject to Eqs. (6a,b,c,d) is

u1 ¼
1þ ek1n � ek1y � ek1ðn�yÞ

N1½1þ ek1n� ; ð7aÞ

u2 ¼ �
½1þ e�k2ð1�nÞ � e�k2ð1�yÞ � e�k2ðy�nÞ�

N2½1þ e�k2ð1�nÞ� ; ð7bÞ

where

k1 ¼

ffiffiffiffiffiffiffi
N1

M1

s
; k2 ¼

ffiffiffiffiffiffiffi
N2

M2

s
: ð8a;bÞ

In the Darcy limit (k1 ?1, k2 ?1) one has slug flow,

u1 ¼ 1=N1; u2 ¼ �1=N2: ð9a;bÞ

In the clear (of solid material) fluid limit (k1 ? 0, k2 ? 0) one
has plane Poiseuille flow,

u1 ¼
1

2M1
½n2 � y2 � ðn� yÞ2�; ð10aÞ

u2 ¼ �
1

2M2
½ð1� nÞ2 � ð1� yÞ2 � ðy� nÞ2�: ð10bÞ

The mean velocity U and the bulk mean temperature Tm are de-
fined by

U ¼ 1
H

Z H

0
u� dy�; Tm ¼

1
HU

Z H

0
u�T� dy�: ð11Þ

Further dimensionless variables are defined by
û ¼ u�

U
; bT ¼ T� � Twl

Tm � Twl
; ð12a;bÞ

where the mean wall temperature Twl is defined by

Twl ¼
1
2
ðTw1 þ Tw2Þ: ð13Þ

This implies that

û1 ¼
u1

�u
; û2 ¼

u2

�u
; ð14Þ

where

�u ¼
Z n

0
u1 dyþ

Z 1

n
u2 dy

¼ 1
N1

n� 2
k1

tanh
k1n
2

� �� �
� 1

N2
1� n� 2

k2
tanh

k2ð1� nÞ
2

� �� �
:

ð15Þ

The value for the Darcy limit is

�u ¼ n
N1
� 1� n

N2
: ð16Þ

The value for the clear fluid limit is

�u ¼ 1
6

n3

M1
� ð1� nÞ3

M2

 !
: ð17Þ

Now suppose that the thermal conductivity is given by

k ¼ k1 for 0 < jy�j < nH; ð18aÞ
k ¼ k2 for nH < jy�j < H; ð18bÞ

so that the mean value is given by

�k ¼ nk1 þ ð1� nÞk2: ð19Þ

We write

~ki ¼
ki

�k
for i ¼ 1;2: ð20Þ

Further we define the Nusselt number Nu based on the channel
width as
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Nu ¼
Hq00l

�kðTwl � TmÞ
; ð21Þ

where q00l is the mean wall heat flux, defined in terms of Fig. 1 and

q00l ¼
1
2
ðq00w1 þ q00w2Þ: ð22Þ

The reader should note that we have defined Nu in terms of the
channel width rather than the hydraulic diameter (twice the chan-
nel width).

The steady-state thermal energy equation (for the case of neg-
ligible axial conduction and local thermal equilibrium) is

u�
oT�

ox�
¼ k

qcp

o2T�

oy�2
: ð23Þ

The first law of thermodynamics leads to

oT�

ox�
¼ dTm

dx�
¼

2q00l
qcpHU

¼ constant: ð24Þ

In this case the dimensionless form of the thermal energy equa-
tion may be written as

d2bT 1

dy2 ¼ �
2Nuû1

~k1

for 0 < y < n;

d2bT 2

dy2 ¼ �
2Nuû2

~k2

for n < y < 1:

ð25a;bÞ

These equations must now be solved subject to the boundary
conditionsbT 1ð0Þ ¼ b; bT 2ð1Þ ¼ �b; ð26a;bÞ
Nu ¼ 420f�b�u½~k1M2n
3ð1� nÞ þ ~k2M1nð1� nÞ3� þ 6M1M2�u2½~k1ð1� nÞ þ ~k2n�g

17
~k1M1
~k2M2
ð1� nÞ8 þ 52M1

M2
nð1� nÞ7 � 70n4ð1� nÞ4 þ 52M2

M1
n7ð1� nÞ þ 17

~k2M2
~k1M1

n8
; ð34Þ
and the matching conditions (for temperature and heat flux)

bT 1ðnÞ ¼ bT 2ðnÞ; ~k1
dbT 1

dy
ðnÞ ¼ ~k2

dbT 2

dy
ðnÞ; ð27a;bÞ

where

b ¼ Tw1 � Tw2

2ðTm � TwlÞ
: ð28Þ

The solution is of the form

bT 1 ¼
bP1ðyÞ þ NuQ1ðyÞ

R1
; ð29aÞ

bT 2 ¼
bP2ðyÞ þ NuQ2ðyÞ

R2
: ð29bÞ

In the Darcy limit the expressions in Eqs. (29a,b) become

P1ðyÞ ¼ N1N2�u½~k2
1ð1� nÞ þ ~k1

~k2ðn� 2yÞ�; ð30aÞ
P2ðyÞ ¼ N1N2�u½~k1

~k2ð1� 2yþ nÞ � ~k2
2n�; ð30bÞ

Q1ðyÞ ¼ �~k1N1ð1� nÞ2yþ ~k1N2ð1� nÞyð2n� yÞ
þ ~k2N2nyðn� yÞ; ð30cÞ

Q2ðyÞ ¼ ~k1N1ð1� nÞð1� yÞðn� yÞ þ ~k2N1ð2n2 � n� 2n2yþ ny2Þ
þ ~k2N2n

2ð1� yÞ; ð30dÞ
R1 ¼ ~k1N1N2�u½~k1ð1� nÞ þ ~k2n�; ð30eÞ
R2 ¼ ~k2N1N2�u½~k1ð1� nÞ þ ~k2n�: ð30fÞ

In the clear fluid limit the corresponding expressions are

P1ðyÞ ¼ 6M1M2�u½~k2
1ð1� nÞ þ ~k1

~k2ðn� 2yÞ�; ð31aÞ
P2ðyÞ ¼ 6M1M2�u½~k1
~k2ð1� 2yþ nÞ � ~k2

2n�; ð31bÞ
Q1ðyÞ ¼ �~k1M1ð1� nÞ4yþ ~k1M2ð1� nÞð2n3y� 2ny3 þ y4Þ

þ ~k2M2ðn4y� 2n2y3 þ ny4Þ; ð31cÞ
Q2ðyÞ ¼ �~k1M1ð1� nÞð1� yÞðy� nÞ½1� 3nþ n2 þ ð1þ nÞy� y2�

� ~k2M1nð1� yÞ½1� 4nþ 6n2 � 2n3 þ ð1� 4nÞy
þ ð1þ 2nÞy2 � y3� þ ~k2M2n

4ð1� yÞ; ð31dÞ
R1 ¼ 6~k1M1M2�u½~k1ð1� nÞ þ ~k2n�; ð31eÞ
R2 ¼ 6~k2M1M2�u½~k1ð1� nÞ þ ~k2n�: ð31fÞ

Finally, substitution into the determining compatibility
conditionZ 1

0
ûbT dy ¼

Z n

0
û1
bT 1 dyþ

Z 1

n
û2
bT 2 dy ¼ 1; ð32Þ

then yields an expression for the Nusselt number.
We used the Mathematica software package to obtain this

expression (which is too complicated to present here for the gen-
eral case) and to obtain values of Nu for various values of the input
parameters.

In the Darcy limit one has

Nu ¼ 6f�b�uð~k1N2 þ ~k2N1Þnð1� nÞ þN1N2�u2½~k1ð1� nÞ þ ~k2n�g
~k1N1
~k2N2
ð1� nÞ4 þ 4N1

N2
nð1� nÞ3 � 6n2ð1� nÞ2 þ 4N2

N1
n3ð1� nÞ þ ~k2N2

~k1N1
n4
;

ð33Þ

where �u is given by Eq. (16).
In the clear fluid limit one obtains
where �u is given by Eq. (17).
It is interesting to compare the above results with those for the

situation where u*
2 is reversed in sign, so that in effect there is no

counterflow; that is the flow in the two layers is in parallel instead
of being in anti-parallel.

Then one has, in place of Eqs. (7b), (9b), (10b), (15), (16) and
(17),

u2 ¼
½1þ e�k2ð1�nÞ � e�k2ð1�yÞ � e�k2ðy�nÞ�

N2½1þ e�k2ð1�nÞ� ; ð7b�Þ

u1 ¼ 1=N1; u2 ¼ 1=N2: ð9a;b�Þ

u2 ¼
1

2M2
½ð1� nÞ2 � ð1� yÞ2 � ðy� nÞ2�: ð10;b�Þ

�u ¼
Z n

0
u1 dyþ

Z 1

n
u2 dy

¼ 1
N1

n� 2
k1

tanh
k1n
2

� �� �
þ 1

N2
1� n� 2

k2
tanh

k2ð1� nÞ
2

� �� �
: ð15�Þ

�u ¼ n
N1
þ 1� n

N2
: ð16�Þ

�u ¼ 1
6

n3

M1
þ ð1� nÞ3

M2

 !
ð17�Þ
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Eq. (25b) is unchanged in form.
In place of Eq. (33), for the Darcy limit, one has now

Nu ¼ 6f�b�uð~k1N2 � ~k2N1Þnð1� nÞ þN1N2�u2½~k1ð1� nÞ þ ~k2n�g
~k1N1
~k2N2
ð1� nÞ4 þ 4N1

N2
nð1� nÞ3 þ 6n2ð1� nÞ2 þ 4N2

N1
n3ð1� nÞ þ ~k2N2

~k1N1
n4
;

ð33�Þ

where �u is given by Eq. (16*)

�u ¼ n
N1
þ 1� n

N2
: ð16�Þ

In place of Eq. (34), in the clear fluid limit one now obtains
Nu ¼ 420f�b�u½~k1M2n
3ð1� nÞ � ~k2M1nð1� nÞ3� þ 6M1M2�u2½~k1ð1� nÞ þ ~k2n�g

17
~k1M1
~k2M2
ð1� nÞ8 þ 52M1

M2
nð1� nÞ7 þ 70n4ð1� nÞ4 þ 52M2

M1
n7ð1� nÞ þ 17

~k2M2
~k1M1

n8
; ð34�Þ
where �u is given by Eq. (17*).
Eqs. (33) and (33*) can be combined to give

Nu ¼ 6f�b�uð~k1N2 � ~k2N1Þnð1� nÞ þN1N2�u2½~k1ð1� nÞ þ ~k2n�g
~k1N1
~k2N2
ð1� nÞ4 þ 4N1

N2
nð1� nÞ3 � 6n2ð1� nÞ2 þ 4N2

N1
n3ð1� nÞ þ ~k2N2

~k1N1
n4
;

ð33��Þ

where �u is given by

�u ¼ n
N1
� 1� n

N2
: ð16��Þ

Here the upper alternative sign refers to the counterflow
situation.

Similarly, Eqs. (34) and (34*) can be combined to give
Nu ¼ 420f�b�u½~k1M2n
3ð1� nÞ � ~k2M1nð1� nÞ3� þ 6M1M2�u2½~k1ð1� nÞ þ ~k2n�g

17
~k1M1
~k2M2
ð1� nÞ8 þ 52M1

M2
nð1� nÞ7 � 70n4ð1� nÞ4 þ 52M2

M1
n7ð1� nÞ þ 17

~k2M2
~k1M1

n8
; ð34��Þ
where �u is given by

�u ¼ 1
6

n3

M1
� ð1� nÞ3

M2

 !
: ð17��Þ
Fig. 1. Definition sketch.

Table 1a
Values of the Nusselt number Nu for counterflow in the Darcy limit (Eq. (33))

N2/N1 = 0.1 1.0 10.0

b = 0 4.37 0.00 4.37
1 7.04 0.00 1.70

10 31.07 0.00 �22.33
3. Results and discussion

3.1. General considerations

Our main interest is in the effect of replacing parallel flow by
counter flow. The prime effect is evident from observation of the
various terms in Eqs. (34**) and (17**). The change in sign in the
middle term of the denominator of Eq. (34**) from + to � has a min-
or effect. Other things being equal, the change would increase the
value of Nu by a small amount. The sign of the value of the denom-
inator stays positive for all values of the parameters. The important
effect is a result of changes in sign in Eq. (17**) and the numerator
of Eq. (34**). First, consider the case of symmetric heating (b = 0).
Because of the term in �u2 the expression for Nu cannot become
negative, but it can become arbitrarily small, and in fact takes
the value zero for the special case when �u becomes zero, that is
when the two terms in Eq. (17**) cancel, e.g. when M1 = M2 = 1
and n = 1/2, i.e. in the case of an antisymmetric velocity profile.
Second, in the case of asymmetric heating (b – 0) the expression
for Nu can become negative. A negative value of Nu means that
the value of (Twl � Tm), the difference between the mean wall tem-
perature and the bulk temperature, has a sign opposite to that of
q00l, the mean wall heat flux into the fluid domain. The negative val-
ues arise in the case of strong thermal asymmetry and when the
product of b and �u is positive, so that the more strongly heated
boundary (and thus the hotter one) is adjacent to the layer in
which the weaker flow occurs, other things being equal. (Note that
N is a reciprocal Darcy number, so that large N corresponds to
small velocity.)

Our general solution contains a large number of parameters, so
for numerical computations we have to be selective. First, we re-
port results for only the Darcy and clear fluid limits. These results
serve as upper and lower bounds for the Nusselt number for the
general case and, as the plots presented below show, there are
no major qualitative differences between the results for the two
cases.

Second, in this paper we present results just for the case of
homogeneity of the thermal conductivity, so we take ~k1 ¼ ~k2 ¼ 1.
The general effect of thermal heterogeneity can in fact be deduced
from an inspection of the expressions in Eqs. (33) and (34). In each
expression the denominator is a relatively weak function of ~k2=

~k1;
the value is increased by a relatively small percentage as ~k2=

~k1

moves away from unity in either direction. In the numerator of
each expression, �u is obviously independent of ~k2=

~k1, so for sym-
metric heating (the case where b = 0) Nu is approximately propor-
tional to ~k1ð1� nÞ þ ~k2n (which for the case of n = 1/2 takes the
value 2, independent of ~k2=

~k1Þ. For the case of asymmetric heating
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there is an additional term proportional to ~k1N2 þ ~k2N1 that is
involved.

Third, we treat only the case where the layers have equal thick-
ness or the thicknesses are in the ratio 1:9 or 9:1, so we take
Table 1b
Values of the Nusselt number Nu for parallel flow in the Darcy limit (Eq. (33*))

N2/N1 = 0.1 1.0 10.0

b = 0 5.14 6.00 5.14
1 7.24 6.00 3.04

10 26.17 6.00 �15.89
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Fig. 2. Contour maps of the Nusselt number Nu, as a function of the asymmetric
heating parameter b and the flow asymmetry parameter N2/N1, for the Darcy limit.
(a) Counterflow (anti-parallel flow) and (b) unidirectional flow (parallel flow), for
the case n = 0.5 (layers of equal thickness).
n = 0.5, 0.1 and 0.9 in turn, and we concentrate on the first of these
cases. That still leaves b and the ratios M2/M1 and N2/N1 to be var-
ied. It is obvious that Nu varies with b in a linear manner and varies
with the other parameters in a more complicated way.

3.2. Darcy limit

Darcy flow can be interpreted as a flow in clotted arteries/veins.
Alternatively, it can be interpreted as a flow in capillary beds. In
the case of thermal homogeneity and for layers of equal thickness,
we obtain the Nusselt number values displayed in Tables 1a and
1b.

The case b = 0 corresponds to symmetric heating. The case
N2/N1 = 1 corresponds to symmetric flow. It is obvious that for
50

5

10

15

0 2 4 6 8 10
0

2

4

6

8

10

30

20

100

5

7

7

10

0 2 4 6 8 10
0

2

4

6

8

10

β

β

N
/

2
N 1

N
/ 2
N

1

a

b

Fig. 3. As for Fig. 1, but now for n = 0.1.
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Fig. 4. As for Fig. 1, but now for n = 0.9.

Table 2a
Values of the Nusselt number Nu for counterflow in the clear fluid limit (Eq. (34))

M2/M1 = 0.1 1.0 10.0

b = 0 3.62 0.00 3.62
1 5.83 0.00 1.41

10 25.73 0.00 �18.49

Table 2b
Values of the Nusselt number Nu for parallel flow in the clear fluid limit (Eq. (34*))

M2/M1 = 0.1 1.0 10.0

b = 0 4.42 5.38 4.42
1 6.23 5.38 2.61

10 22.49 5.38 �13.66
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symmetric flow the value of Nu is independent of whether the
heating is symmetric or not, the value being zero for counterflow
and 6.00 for parallel flow. The effect of increasing b is to increase
Nu if N2 < N1 and to decrease it if N2 > N1.

The general trends, for the case of layers of equal thickness
(n = 0.5) are illustrated in the contour maps plotted in Fig. 2a
and b. There appears to be a singularity as N2/N1 tends to zero
when b is large. The corresponding contour maps for the cases
of n = 0.1 and n = 0.9 are shown in Figs. 3a, b and 4a, b
respectively.
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Fig. 5. Contour maps of the Nusselt number Nu, as a function of the asymmetric
heating parameter b and the flow asymmetry parameter N2/N1, for the clear fluid
limit. (a) counterflow (anti-parallel flow) and (b) unidirectional flow (parallel flow),
for the case n = 0.5 (layers of equal thickness).
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Fig. 6. As for Fig. 1, but now for n = 0.1.
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Fig. 7. As for Fig. 1, but now for n = 0.9.
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3.3. Clear fluid limit

The general situation for the clear fluid limit is similar to that for
the Darcy limit, but now M2/M1 takes the place of N2/N1. In the case
of thermal homogeneity and for layers of equal thickness, we obtain
the Nusselt number values displayed in Tables 2a and 2b.

The case b = 0 corresponds to symmetric heating. The case M2/
M1 = 1 corresponds to symmetric flow. It is obvious that for
symmetric flow the value of Nu is independent of whether the
heating is symmetric or not, the value being zero for counterflow
and 5.38 for parallel flow. The effect of increasing b is to increase
Nu if M2 < M1 and to decrease it if M2 > M1.

The general trends, for the case of layers of equal thickness
(n = 0.5) are illustrated in the contour maps plotted in Fig. 5a and
b. There appears to be a singularity as M2/M1 tends to zero when
b is large. The corresponding contour maps for the cases of
n = 0.1 and n = 0.9 are shown in Figs. 6a, b and 7a, b respectively.
The results for the clear fluid limit are qualitatively similar to those
for the Darcy limit.

4. Conclusion

We have obtained an analytical solution for forced convection
with counterflow in a parallel plate channel, with asymmetric con-
stant heat-flux boundaries, occupied by a layered saturated porous
medium modeled by the Brinkman equation. Detailed results for
the Nusselt number have been presented for the cases of the Darcy
limit and the clear fluid limit. These provide bounds for values for
the general case of a Brinkman porous medium. The dramatic
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effect of counterflow (in contrast to flow in one direction) is to re-
duce the value of the Nusselt number, to values that can be nega-
tive (and to zero in the case where the velocity profile is symmetric
in the sense that the mean velocity is zero). It is expected that the
general trends illustrated by the present model will carry over to
specific biological situations.
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